flies are therefore suitable to study the cellular events associated with the rhabdomere morphogenesis. Second, we described opsin-containing large complex body (LCB) in the rER mass. The opsins in the LCB may be incorporated into the rhabdomeres. Finally, electron microscopic histochemistry of opsin and actin suggested that the actin filaments serve as a route for opsin transport towards the rhabdomere.

Double labeling

Two double labeling methods employed here both functioned properly, and gave similar results. The labeling density was consistent except for the antiactin labeling on the rhabdomere in both methods. The observed variation in the density of antiactin labeling is probably attributed to the arrangement of actin in the rhabdomere: actin contributes to the slender core of the microvilli [2, 20]. We cut the hexagonally packed microvilli, each of which is about 100 nm in diameter, roughly along their longitudinal axes. In the ultrathin sections, about 70 nm in thickness, the number of cores contained in a section would vary depending on the cutting angle and/or the degree of distortion of the microvilli arrangement. The number of cores in the section affects the frequency of epitopes exposed on the section surface, which is a determinant of the labeling density.

Opsin synthesis

The photoreceptors of newly emerged flies actively synthesize proteins, which is indicated by the rich content of rER in the cell body (Figs. 1 and 2). The proteins should include opsin, for the rER was occasionally labeled with antiopsin (Fig. 6b, f, Table 1).

The newly emerged flies appeared to have large opsin-bearing structures of irregular profile, which contain vesicles, ribosomes and/or rER, making the cross sectional appearance complex (Figs. 1 and 3). We therefore termed the structure as large complex body (LCB). Some LCBs were enclosed by several layers of membranes densely labeled with antiopsin (Fig. 3f, h). Although some of these resemble autophagic vacuoles, there is also a possibility that the opsins in the LCBs, in the lamellated membranes in particular, are newly synthesized rather than removed from the rhabdomere. Our preliminary observation indicates that the LCBs are abundant even in the late pupal stage and then mostly disappear within two days after emergence: the appearance of the LCBs coincides with the activity of the rhabdomere morphogenesis [15]. The functional significance of the LCBs is remained for further investigation.

MVBs and LBs are both involved in the membrane degradation [8, 11]. Although not frequent, the MVBs and LBs, both contain opsin, were also found in the newly
emerged flies (Fig. 4), suggesting that the rhabdomere degradation was not inhibited during the stage where the rhabdomere morphogenesis is actively taking place.

Actin and transport of opsin

Transverse sections of the retina clearly show that the photoreceptors have two distinct domains: the rhabdomere and the cell body (Fig. 1). The opsins synthesized in the cell body should be transported to the site of function, the rhabdomere, through the gap between the domains.

There are two possible routes for new opsins to reach the rhabdomere: via the plasma membrane facing to the intraommatidial space [21], and through the subrhabdomeral cisternae (SRC) [14, 24].

Here the antiopsin clearly labeled the plasma membrane (Fig. 6a, b, Table 1). The opsins in the plasma membrane is probably being transported towards the rhabdomere rather than removed from there. One reason for this is that the rhabdomere volume is increasing in this stage (Fig. 2): the flies retain high activity of rhabdomere morphogenesis that
should require opsin incorporation into the rhabdomere. Secondly, the labeling density on the plasma membrane is significantly higher in the newly emerged than in 10 d old flies (Table 1). Thirdly, the plasma membrane is lined with the uniformly oriented actin filaments with the plus ends towards the rhabdomere (Fig. 6c, d) and anti-NINAC labeling [13].

As suggested by Adams and Pollard [1] in Acanthamaeba myosin I, the myosin-like NINAC could move the membrane-embedded opsin towards the plus end of the actin filaments, i.e., towards the rhabdomere.

In fact, actin is probably involved in the rhabdomere morphogenesis. In a crab, Hemigrapsus sanguineus, the rhabdom volume increases at dusk and decreases around dawn [3]. The volume increase was inhibited by treating the isolated eye at dusk with cytochalasin D, which disrupts actin filaments. As the cytochalasin D treatment had no effect at night on the enlarged rhabdom, the inhibition of the volume increase should be attributed not to the disintegration of once established rhabdom but to the disruption of some processes in the rhabdom morphogenesis [16].

The most plausible process mediated by the presumptive actin-opsin interaction is the transport of opsin. When applied also at dusk, colchicine, a microtubule inhibitor, failed to stop the volume increase, suggesting that the actin was more directly involved in the rhabdomere morphogenesis than the microtubules [16]. Further analyses using other inhibitory drugs are in progress.

The actin-NINAC interaction also explains another route of opsin transport through the SRC, which is an opsin-containing network that wraps the entire base of the rhabdomere [14, 24]. The SRC is connected to the rER with membrane tubules forming an extensive endomembrane system. The opsins in the SRC are probably originated from the rER, the site of opsin synthesis, through the membrane tubules, although no opsin had been so far localized in the tubules. Here we detected antiopsin labeling in the region between the rhabdomere and the cell body. The labeling appeared to be associated with the vesicles or pieces of membranes (Fig. 6g, h). These endomembranes are most likely parts of the tubules, for the tubules appear in transverse sections as elongated or swollen vesicles [14], or even as fragmented membranes if one side of the tubule was tangentially sectioned. The antiopsin labeling on the rER probably represents new opsins that will be transferred into the tubules (Fig. 6b, f).

The region between the rhabdomere and the cell body is furnished also with the NINAC [13]. By the presumptive interaction between actin and NINAC, the opsins embedded in the endomembranes can be transported towards the rhabdomere.

ACKNOWLEDGMENTS

We thank Dr. T. Tanimura for providing the monoclonal anti-Drosophila Rh1 opsin antibody. Drs. T. Tanimura, S. Stowe, and E. Eguchi provided helpful comments in the initial stages of the work. We also thank two anonymous referees for many valuable suggestions on the manuscript. The work was supported by the Grants to K. Arikawa from Whitehall Foundation (Florida, USA), Kihara Foundation for Life Sciences (Yokohama), and the Ministry of Education, Science, and Culture of Japan.

REFERENCES

Experimental Perturbations of the *Litonotus-Euplotes* Predator-Prey System

NICOLA RICCI and FRANCO VERNI

*Dipartimento di Scienze dell’Ambiente e Territorio,
via A. Volta 6 56100 Pisa, Italy*

ABSTRACT—A model previously proposed to demonstrate the interactions between *Litonotus* (predator) and *Euplotes* (prey), led to a new round of experiments. The different experimental approaches used to solve these questions (starved cells; killed cells; enzymes; lectins; ions; inhibitors) resulted in quite a new model of the cell interactions which accounts for the different steps of the phenomenon: the main point demonstrated by these experiments is that the cellular cortex of both predator and prey is involved in many of the successive steps of the cascade reactions enabling *Litonotus* to prey upon *Euplotes*

INTRODUCTION

Efforts spent in attempting to deepen our understanding of predation among protozoa are completely justified by the basic importance of the process. Protozoa, indeed, were not only the first primary consumers in the primeval Oceans, but the first predators as well [12]. Such a new trophic niche is quite an important one, due to the two consequences it leads to: (a) it creates new empty spaces for new organisms to settle in, (b) it triggers a sort of evolutionary competition between preys and predators (to escape and to strike each other, respectively) as to their morpho-functional acquisitions. Many examples have been already studied and the knowledge of the *Didinium-Paramecium* [1], *Dileptus-Colpidium* [34], *Enchelys-Tetrahymena* [5], *Chaenea-Uronema* [5]; *Homalo-zoon-Paramecium* [4] predator-prey systems, cannot but help us to complete our overall picture of this phenomenon considered from a more specific synecological point of view: in this perspective, indeed, the study of predator-prey interactions also lends itself to be used in an attempt to penetrate the adaptive strategies, conditioning the reciprocal (co)evolution of predators and preys. Let us recall the example of the bath-moth relationships, as a truly paradigmatic one, to clarify our idea [28].

In this context we studied another predatory model, namely that of *Litonotus lamella-Euplotes crassus*, focusing our attention successively on (a) the ultrastructure of the toxicsysts of the predators [11], (b) the ultrastructural analysis of the consequences to *Euplotes* of toxicyst discharge by *Litonotus* [32]; (c) the peculiar digestion process [33] and, finally, (d) the behavioural patterns following each other along a path characterised by the succession of several basic steps, namely casual encounter (CE); toxicyst discharge (TD); research (R); engulfment of the prey (PE)[8]. The predator-prey interaction model proposed in the previous paper focused our attention on several closely related problems, which represented the targets of the next round of experiments: (a) how is the toxicyst-discharging system triggered and controlled? (b) which are the spatio-temporal sequences of a toxicyst-discharge phenomenon?

The unique nature of our pet-organism protozoa (i.e. indeed perfect eukaryotic cells and complete organisms, at the same time) offers a double advantage: (a) it enables us to use all those techniques typical of experimental studies on cell interactions to investigate also the relationships between entire organisms and (b) it allows us to transfer any results obtained for these truly sophisticate organisms to the general field of cell biology.

MATERIALS AND METHODS

Both *L. lamella* and *E. crassus* were grown, collected and used as already described by Ricci and Verni [24]. The observations were made with a Wild M5 (20–60X) stereomicroscope, and a Leitz Orthoplan (400X) microscope (together with its Nomarsky interferential contrast), coupled to a Panasonic TVC camera and a VHS videorecorder. Unless otherwise indicated, the prey organism was *E. crassus*. The following specific procedures were followed for the different kinds of experiments:

Expt. 1 The effects of starvation on preys and on predators were studied using normal and starved *Litonotus*, exposed to both normal and starved *Euplotes*. Normal populations of predators were used 4 days after the last feeding, while the starved ones were tested after 11 days. Normal *Euplotes* were not fed for 24 hr, while the starved ones were used 7 days after the last feeding.

Expt. 2 To study the role played by the body itself, of both the predator and the prey, in the specific toxicyst discharge (TD) processes at the very moment when the two organisms come into direct contact with each other and the TD itself is triggered and actually occurs, both *Litonotus* and *E. crassus* were frozen, and then thawed at room temperature (the experimental populations were immersed in liquid nitrogen for 2 min): in this way the structurally and chemically preserved, but physically inert bodies of both *Litonotus* and *Euplotes* were tested with living prey or predator respectively. In some of these experiments homogenized *Euplotes* were also used.

Expt. 3 Whenever a predator contacts a prey TD occurs: does TD affect the microenvironment where it occurred? How far for TD area is such an effect perceived? How long does it persist? How is the behaviour of *Euplotes* affected? To solve these problems, many TD
events were videorecorded and the videotapes scored frame by frame according to the standard technique for behavioural studies reported elsewhere by Ricci [20]. In this way we quantified: a) the subcircular area where the TD effects are perceived by Euplotes; b) their duration; c) the changes in behaviour of the prey.

Expt. 4 To assess the role possibly played by calcium concentration in the sea water, 3 different standard set ups (cf. Expt. 5) were prepared: the first contained standard marine water (control), the second 15 mM calcium chloride, the third the same concentration of CaCl₂ plus 0.1 mM EDTA, to inhibit the effects of the calcium. Previous experiments, carried out with 5, 10, 15, 20, and 25 mM Ca⁺² and with 0.01, 0.1 and 10 mM EDTA had shown that the best results were obtained with 15 mM Ca⁺² and with 0.1 mM EDTA. In other words these two concentrations were the lowest capable of inducing clearcut results. Five experiments were then carried out and microvideorecorded, to measure: (a) the time lag between the introduction of Litonotus and the first instance of TD (this period of time will be referred to as TD at throughout this experiment, it somehow measures the efficiency to Litonotus in intercepting the prey); (b) the time lag between the introduction of Litonotus and the actual engulfment of the killed prey (this period of time will be referred to as I at this period, it somehow measures the efficiency of Litonotus feeding on the prey); (c) the length of the backward motion of Litonotus following TD; (d) the number of TD per Litonotus.

Expt. 5 The effects of trypsin (Sigma, T8253; concentration 2.5, 2, 1.5, 1 and 0.5%) were also studied. About 50 Litonotus were incubated in the different concentration for various time periods (15, 30, 60, 90, 120, 180, 210 and 240 min); they were washed 3 times and then used in a 50 μl droplet with concentrated Euplotes, to study the TD %, I % and the percentage of inhibited (namely not-toxicyst discharging) Litonotus. When 100% TD inhibition was induced, the Litonotus still incubated with trypsin were washed free of the enzyme fresh water and then used in Euplotes populations to monitor their recovery period.

Expt. 6-A The effects of concanavalin-A (Con-A, Sigma C2010; concentration 2, 1.5, 1, 0.5 and 0.25%; treatment time 15, 30, 60, 90, 120, 150, 180 and 210 min) on Litonotus were studied by washing the treated cells after different periods of time and measuring TD %, I % and the percentage of inhibited cells, when these experimental Litonotus were transferred into a 50 μl droplet of concentrated Euplotes. The same treatments were also carried out on incubating Litonotus in the same dosages of Con-A and for the same times as before, in the presence of 40 mM of α-methyl-D-mannoside, well-known as a specific competitor of Con-A. The same parameters were measured.

Expt. 6-B Concentrations of 2 and 1% of Con-A were also used to incubate Euplotes for 15, 30, 60, 90, 120, 150, 180, 210, 270, 330, and 390 min: these populations were washed three times and then exposed to Litonotus, to measure the TD %, the I %, the percentage of non-discharging Litonotus.

Expt. 7 In a final experimental approach, Litonotus was treated with different concentrations (0.5, 0.25, 0.125, 0.06, 0.03 and 0.015%) of cycloheximide (Chx)(Sigma C-6255) for different times (1 to 9 hr); they were used singly with populations of Euplotes to measure TD %, I % and the percentage of TD inhibition. When 100% TD inhibition was obtained the still incubated cells were washed free of Chx and then used with Euplotes to study the kinetics of their recovery in terms of the percentage of TD inhibited cells.

RESULTS

Expt. 1 The effects of different starvation of Litonotus and Euplotes.

Previous microscope observations (Verni, unpublished results) had shown that the longer the starvation, the more caudal the distribution of toxicysts: the effects were statistically significant. On the basis of these findings, the consequences of starvation were studied more specifically.

The results obtained in this round of experiments demonstrated that (a) severe starvation affects the efficiency of predator's TD: Table I, the II and the IV columns vs the I and the II; (b) the starvation of the preys affects, to a limited extent, the ingestion capability of Litonotus (Table 1, I %, the II vs the I column and the IV column vs the III), while it does not affect the corresponding TD %.

Expt. 2 The predatory interactions between Litonotus and frozen-thawed Euplotes.

Litonotus cannot be frozen and then thawed, without being disrupted: no result could be obtained, except that the area where a disrupted Litonotus lies is avoided by the preys. Normal Litonotus exposed to a population of frozen-thawed Euplotes demonstrated that: (a) Litonotus can ingest them without discharging any toxicysts (Fig. 1B); (b) the TD % is longer than twice as much as that of the control (Fig. 1: B vs A); (c) when freshly prepared homogenate of Euplotes is added to the system, ID % is strikingly reduced (Fig. 1C).

Expt. 3 The TD-affected area.

![Fig. 1. The TD-affected area](image-url)
The results we obtained are the following: (a) the effects of a TD event extend around the TD point over a sub-circular area of about 300µm in diameter, (b) the same effects increase up to their maximum for 90 sec after the TD event and last for about 3 min; (c) the behaviour of the preys is clearly affected by the TD event as demonstrated by the high frequency of avoidances induced in Euplotes by TD immediately afterwards (Fig. 2, shadowed areas); the avoidances correspond to the behavioural pattern called Side Stepping Reaction [19] and indicated as SSR; (d) these SSR occur according to a temporal pattern parallel to that of Euplotes avoiding the area where a frozen-thawed disrupted Litonotus is placed (Fig. 2, white areas).

Expt. 4 The role of Ca$^{2+}$ in the environment.

The results given in Table 2 clearly show that calcium ions affect the general physiology of the Litonotus-Euplotes system at least at three different levels: (a) TD dt is not affected; (b) the length of the backward motion is doubled; (c) Idt increases by about 50%; (d) the number of TD per Litonotus is doubled. EDTA inhibits calcium effects, as expected. As considered in the Materials and Methods section, the differential effects of calcium ions on TD dt (no effect) and on Idt (strong inhibition), actually demonstrate the importance of both parameters in interpreting correctly the effects of calcium ions on the Litonotus-Euplotes system. Expt. 5 The effect of trypsin on Litonotus.

The enzyme was already known to affect the physiology of Litonotus; progressively higher concentrations and longer treatments, indeed, induce (a) a progressive darkening of the cytoplasm, (b) a rounding of the body shape, (c) reduced locomotion, (d) immobilization and (e) lysis of the cell (Ricci and Verni, unpublished results). It was found (Fig. 3) that the different concentrations used for the different times indicated in Material and Methods, clearly affect TD dt (the higher the concentration, the longer TD dt) but not Idt (the difference between TD dt and Idt is indeed rather constant). For a certain concentration a longer treatment affects the percentage of cells not discharging their toxicysts (Fig. 4), while TD dt tends to be more or less constant, the different values depending solely upon trypsin concentration. Once
100% inhibition is induced (namely, when no Litonotus can discharge its toxicysts) they still behave quite normally and their physiology seems to be unaffected: after washing, these completely inhibited populations recover 80% of their TD activity within 30–60 min, and 100% of their potentialities within 60–120 min.

Similar treatments with trypsin were also conducted on Euplotes; the enzyme either has no effect at all on both TD Δt or Ldt, and it kills the preys.

Expt. 6A The effects of Con-A on Litonotus.

The results of the experiments are the following: (a) the higher the Con-A concentration, the stronger the effect, on TD Δt, but not on Ldt (Table 3) (b) for the same concentration, the longer the treatment, the stronger the effect on TD Δt but not on Ldt (Table 3) (c) as the Con-A concentration increases.

Table 3. The TDΔt and the Ldt of different populations of Litonotus treated by different concentrations of Con A (shown in the first line) for different times, given in the left column.

<table>
<thead>
<tr>
<th>Con A</th>
<th>2%</th>
<th>1.5%</th>
<th>1%</th>
<th>0.5%</th>
<th>0.25%</th>
<th>control</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
<tr>
<td>Con A</td>
<td>2%</td>
<td>1.5%</td>
<td>1%</td>
<td>0.5%</td>
<td>0.25%</td>
<td>control</td>
</tr>
<tr>
<td>t</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
<td>TDΔt</td>
<td>Ldt</td>
</tr>
</tbody>
</table>